

Blueberry *Botrytis*

Presented by Monika Walter

On behalf of Shahjahan Kabir, Peter Wright, Maryam Alavi, Annie Reid, Teiarere Stephens

March 2024

Botrytis cinerea (B.c.) causal agent of grey mould

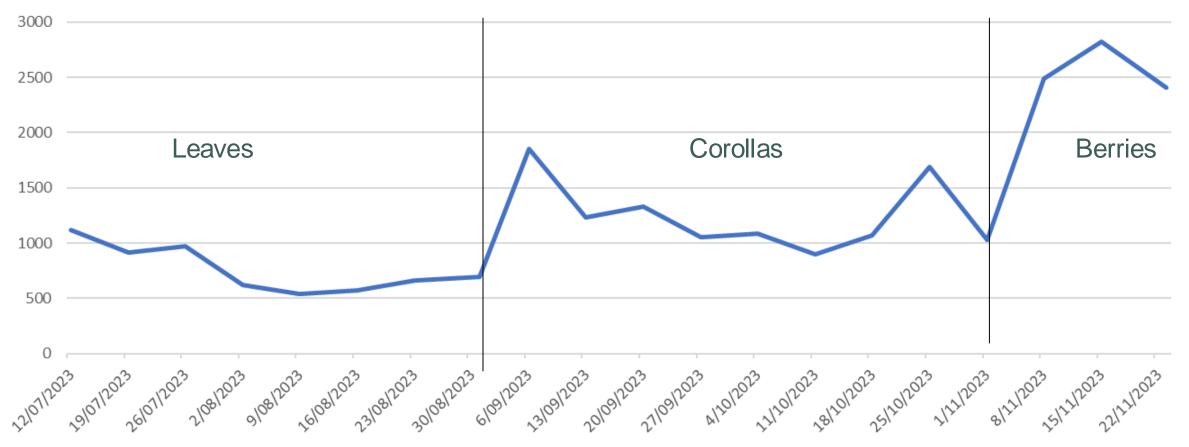
- It is a necrotroph
- An opportunistic pathogen
- In green tissue, it needs a wound
- Green fruit shows resistance, ripe fruit does not
- There is an abundance of necrotic corollas
- There is an abundance of aborted flowers

Experiments

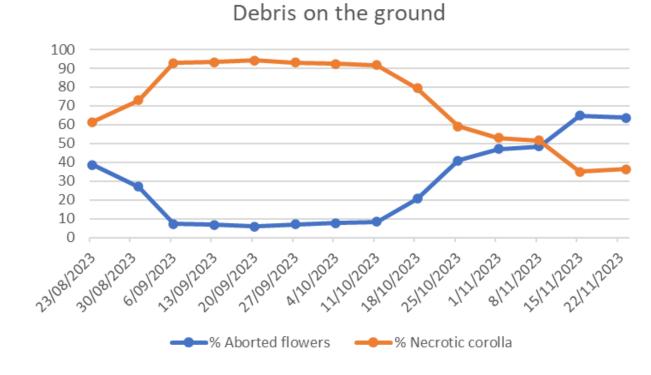
Three experiments

- 1. Inoculum removal
- 2. Spray trial
- 3. Berry collapse

 50 m length was swept weekly starting 26 July

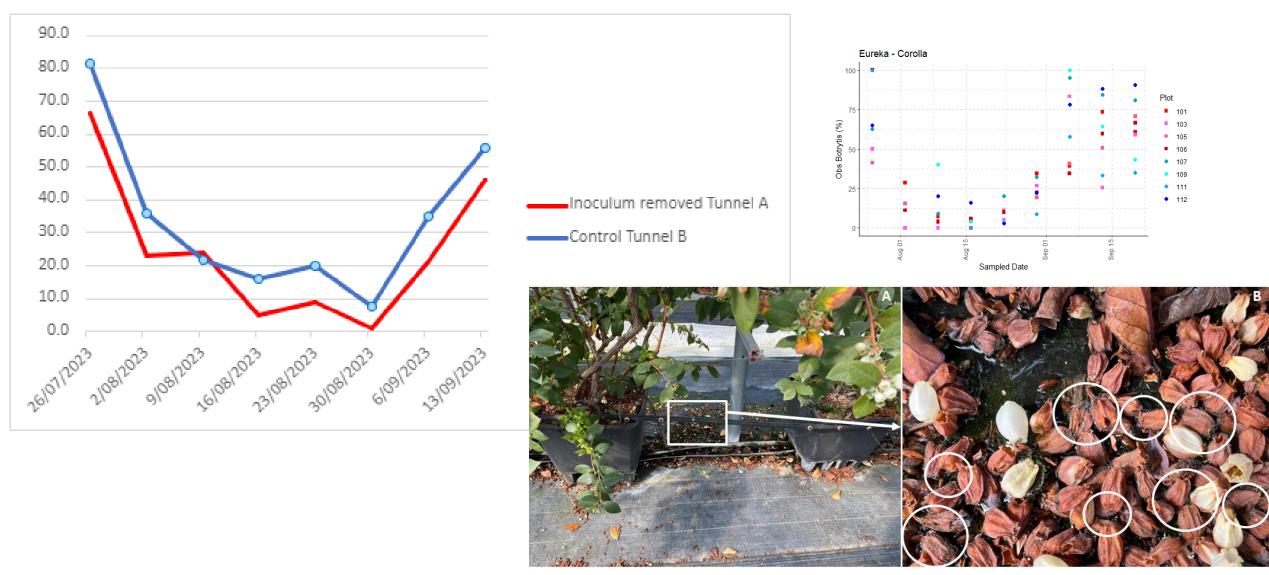


- Incubation of corollas, aborted flowers, green berries (surface sterilised), and ripe berries
- Debris dry weights
- Corolla: aborted flower ratios counted

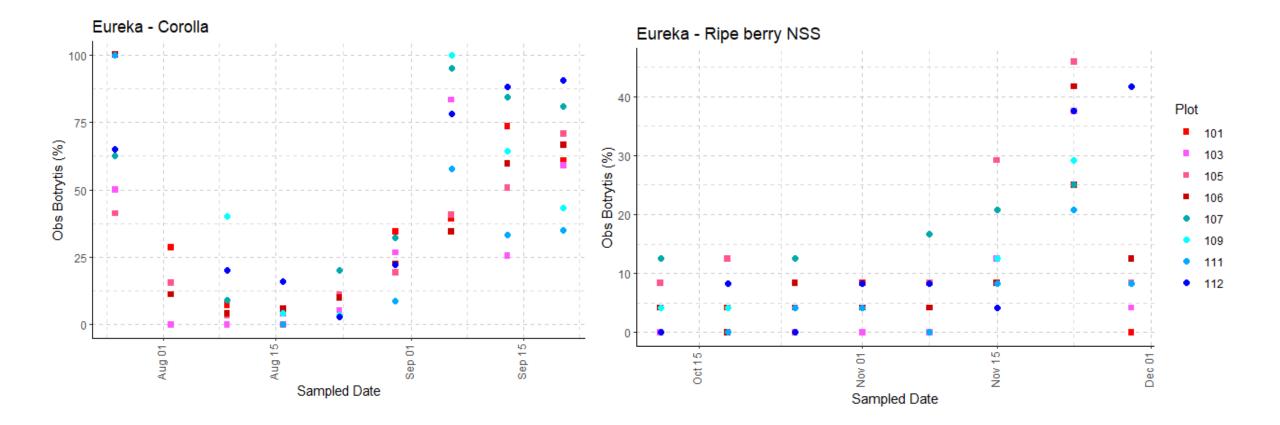


• Debris dry weights

Dry weight of debris on the ground (g)

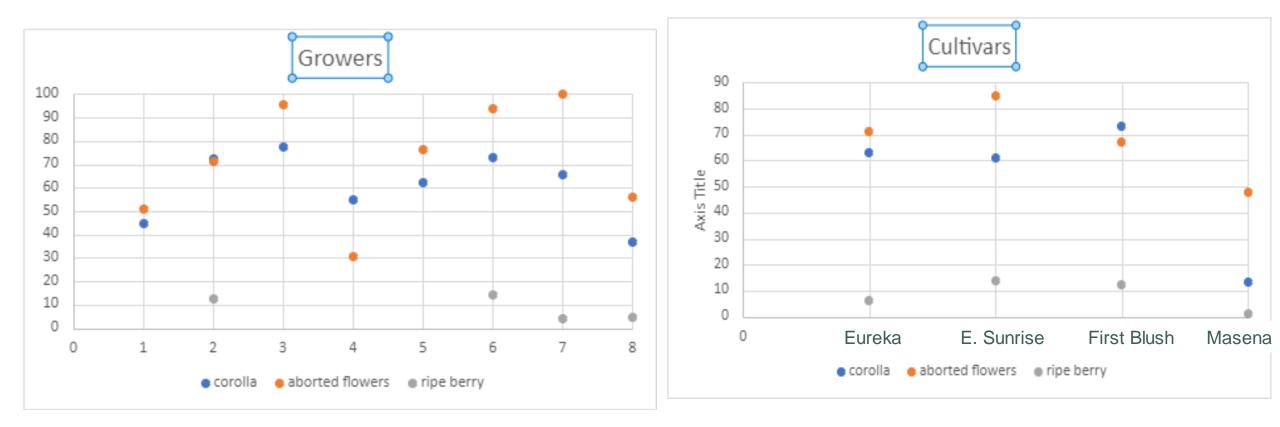


• Corolla:aborted flower ratios counted



1010 100000 1000 1.4.4 abor leat flowers impled 23.8.23 255 corolla

• Corolla colonisation (%) by Botrytis cinerea after 5 days incubation



- Corolla colonisation (%) might be predictive of ripe berry infections
- Removing inoculum broke the link between corolla and ripe berry infection

Observational data

 Botrytis cinerea colonisation (%) on tissues collected from 8 grower properties and four cultivars

Inoculum control – key findings

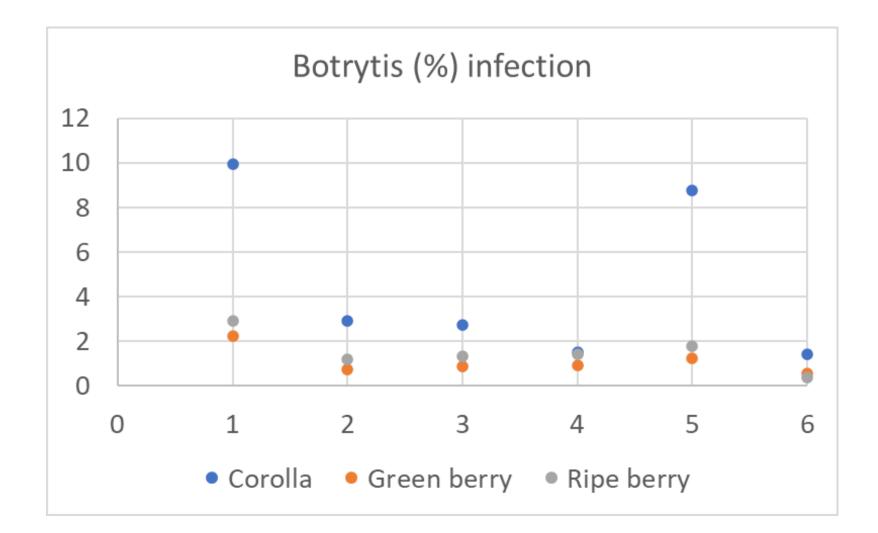
- Q
- Corolla infections increase over time, so do green berry and ripe berry infections (but at a lower rate @ 5x less)
- Corolla-ripe berry infection relationship
- Wet patches from irrigation/fertigation run-off contribute to increased Botrytis sporulation
- Flower abortion was prevalent The highest count of symptomatic tissues/plant (in the canopy) was 975 (25 Oct 2023). Average max Tunnel A was 47 and Tunnel B 525, first count 13 Sep both stated at 3-5/plant
- Sweeping causes spore clouds (inverted leaf blower) for vacuum might be more user and plant friendly
- Humidity in the tunnels is high and therefore conducive to *Botrytis* development use of fans?
- 'Low' ripe berry infections compared to previous seasons
- Sanitation, wetness management and humidity control are key tools in disease management and reducing spore production potential

Experiments

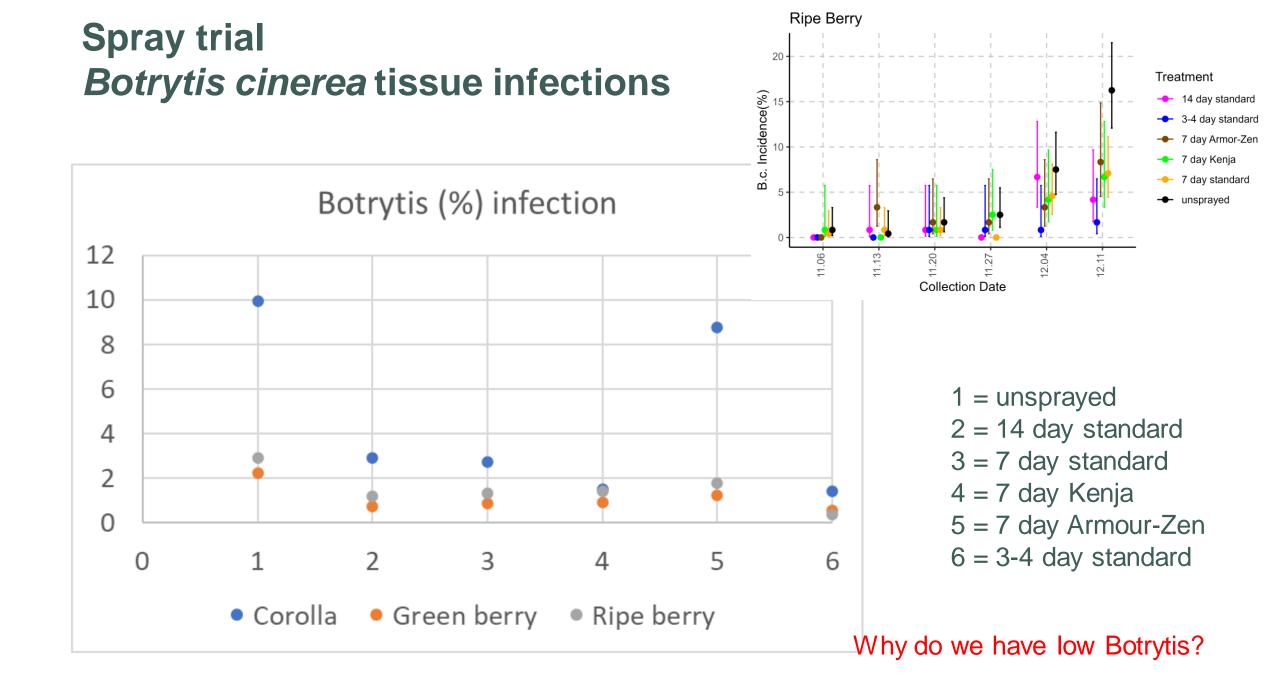
Three experiments

- 1. Inoculum removal
- 2. Spray trial
- 3. Berry collapse

• 8 treatments: product and application frequency


Spray Trial Treatments

	Sampling Timing	Corollas (25 Jul – 11 Sep)					Green berries (11 Sep – 23 Oct)					Ripe (blue) berries (6 Nov – 11 Dec)						
	Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	Application date	25-Jul	1-Aug	8-Aug	15-Aug	23-Aug	29-Aug	5-Sep	12 Sep	19-Sep	26-Sep	3-Oct	10-Oct	17-Oct	24-Oct	31-Oct	7-Nov	14-Nov
TRT#																		
1	Unsprayed	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	Unsprayed (2)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	14 day, grower standard	Р	-	S	-	Ρ	-	S	-	Е	-	Е	-	Е	-	С	-	С
4	7 day, grower standard (2x Switch)	Р	С	S	С	Р	С	S	С	Е	С	Е	С	Е	С	С	С	С
5	7 day, grower standard (1x Switch)	Р	С	-	С	Ρ	С	S	С	Е	С	Е	С	Е	С	С	С	С
6	7 day, Kenja	Р	С	К	С	Ρ	С	S	С	Е	С	Е	С	Е	С	С	С	С
7	7 day, Armour-Zen	Р	С	AZ	AZ	AZ	AZ	AZ	AZ	AZ	AZ	AZ	AZ	AZ	AZ	AZ	AZ	AZ
8	3-4 day, grower standard	P, C	C, C	S, C	C, C	P,-	C, C	S, C	C, C	E, C	C,-	E, C	C, C	E, C	C, C	C, C	C, C	C, C


P=Pristine® (BASF), C=Captan 600 Flo® (Nufarm), S=Switch® (Syngenta New Zealand), K=Kenja® (UPL),

E=Esteem® (Arxada New Zealand), AZ= Armour-Zen® (Botryzen).

Spray trial - Botrytis cinerea tissue infections

1 = unsprayed
2 = 14 day standard
3 = 7 day standard
4 = 7 day Kenja
5 = 7 day Armour-Zen
6 = 3-4 day standard

Spray trial – key findings

- Low *Botrytis* infections in 'Masena'
- Ripe berry infections increased in all treatments during harvest 6 Nov to 11 Dec, the least in the 3-4 day interval spraying
- Green berry infections provided a good baseline for predicting minimum ripe berry infections
- In a low-risk year and a low risk cultivar a 14 day spray interval could be adequate
- In a low risk year and a high risk cultivar would a 7 day spray intervals be adequate for *Botrytis* management?
- In a high risk year and a high risk cultivar how many sprays would be needed?
- What does an integrated disease management programme look like?

Experiments

Three experiments

- 1. Inoculum removal
- 2. Spray trial
- 3. Berry collapse

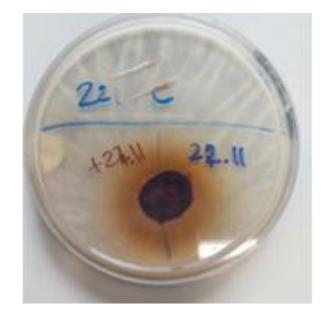
• Yieldia packhouse separating into premium, River run, and reject fruit

Berry Collapse – Orchard Sample Collection

Grower	Variety	Date Sampled
1	Sunrise	11/11/2023
1	Eureka	11/11/2023 17/11/2023 23/11/2023
1	Masena	11/11/2023 17/11/2023 23/11/2023
2	Eureka	11/11/2023 17/11/2023 23/11/2023
2	Masena	11/11/2023 17/11/2023 23/11/2023

Berry Collapse – Packhouse Sample Collection

Grower	Class	Variety	Arrived At Yeildia	Processed at Yeildia
2	General Reject	Masena	*	21/11/2023
1	Other Reject	Mixed	20/11/2023	22/11/2023
			23/11/2023	24/11/2023
			24/11/2023	27/11/2023
			4/12/2023	5/12/2023
1	Soft Reject	Mixed	20/11/2023	22/11/2023
			23/11/2023	24/11/2023
			24/11/2023	27/11/2023
			4/12/2023	5/12/2023
1	River Run	Mixed	20/11/2023	22/11/2023
			24/11/2023	27/11/2023
			4/12/2023	5/12/2023
1	Premium	Mixed	20/11/2023	22/11/2023
			24/11/2023	27/11/2023
			4/12/2023	5/12/2023


* Date unknown

Berry collapse – what we did

Q

- Collect fruit
- Sort into four berry types: pink, regular/ripe, soft and collapsed berries
- Brix, firmness and interior browning
- Surface sterilise (SS) and not surface sterilised (NSS)
- Incubate each berry type, SS, in a titre plate, on agar and on a tray to study *Botrytis* colonisation
- Incubate regular type, NSS, on a tray for Botrytis disease expression

	Berry type	B.c. % Titre	B.c. % Agar	B.c. % SS	B.c. % NSS	Browning score
Yieldia	Pink	0	0-25	10	11	1.1
	Regular	0-56	0-50	14-35	2-13	1.5
	Soft	1-25	1-50	34	33	2.0
	Collapsed	33-100	100	56	95	3.8
Orchard	Pink	1-9	0	-	-	1.0
	Regular	2-5	4-9	2-11	8-29	1.5
	Soft	4-20	12-22	-	-	1.8
	Collapsed	50-100	25-100	-	-	3.5

Eureka Sunrise > Eureka > Masena (10, 5, 1 for SS; 29, 22, 8 for NSS)

Berry collapse – key findings

- Lowest *Botrytis* infections in 'Masena'
- Highest *Botrytis* infection in collapsed fruit followed by soft, River run, regular, premium and pink/unripe fruit.
- Not all collapsed berries developed Botrytis
- Not all 'brown' fruit developed *Botrytis*
- Surface sterilisation increased post harvest shelf life (less *Botrytis* than NSS berries)
- Spore surface contamination is a large contributor to berry rot
- Berry damage during harvest/post harvest handling, plus surface contamination and spore re-distribution, lack of quick chilling all contribute to speed of berry rots
- Other rots found included Aspergillus, Penicillium, Rhizopus, Phoma and yeasts
- Collapsed fruit is not solely caused by pathogens

Recommendations

- Remove/vacuum your corollas and aborted flowers from plants and ground
- Avoid wetness on the ground
- Control humidity via fans or ventilation
- I don't believe we can spray our way out of high risk years and high risk cultivars
- Ensure good spray coverage
- Look out for other rots
- The time from picking to cooling should be 30 min or less
- Avoid unnecessary fruit handling
- Avoid temperature fluctuations
- Avoid overripe fruit
- Understand latent infections (arising from flowering) vs spore contamination at harvest
- I feel, integrated disease management guidelines for under cover blueberries would be beneficial, including decision support systems. Guidelines should account for regional and cultivar differences

Acknowledgements

BerryCo Miro LP Yieldia Growers Consultants

Monika.walter@plantandfood.co.nz

021302740

