CallaghanInnovation

New Zealand's Innovation Agency

Summer Internship 2023 – 2024

Annie Reid Massey University

Introduction

- Hello! My name is Annie
- I am in the final stages of completing my bachelor of Horticultural Science degree at Massey University, just this summer to go.
- Something fun about me is I LOVE CATS! And run a cat rescue in Palmy
- Thank you to BerryCo for allowing me to return this summer for a second internship.
 This involved a wide range of work, such as:
 - Working at Plant & Food Research
 - Assisting with and analysing multiple trials
 - Analysing spray diaries and residue tests
 - Analysing fruit and leaf nutrient samples that had been sent to hills

A different season to last year

- Botrytis expression post-harvest was substantially less compared to last year
- A big contributor to the decrease in disease pressure was the climate

Source: Tauranga Metservice

Berry Collapse Trial Overview

Aim: to understand if the postharvest berry collapse was biological (e.g. botrytis) or physiological/other nature.

Plant & Food™

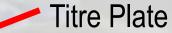
Rangahau Ahumāra Kai

Berry Collapse – Orchard Sample Collection

Grower	Variety	Date Sampled
1	Sunrise	11/11/2023
1	Eureka	11/11/2023 17/11/2023 23/11/2023
1	Masena	11/11/2023 17/11/2023 23/11/2023
2	Eureka	11/11/2023 17/11/2023 23/11/2023
2	Masena	11/11/2023 17/11/2023 23/11/2023

Berry Collapse – Packhouse Sample Collection

Grower	Class	Variety	Arrived At Yeildia	Processed at Yeildia
2	General Reject	Masena	*	21/11/2023
1	Other Reject	Mixed	20/11/2023	22/11/2023
			23/11/2023	24/11/2023
			24/11/2023	27/11/2023
			4/12/2023	5/12/2023
1	Soft Reject	Mixed	20/11/2023	22/11/2023
			23/11/2023	24/11/2023
			24/11/2023	27/11/2023
			4/12/2023	5/12/2023
1	River Run	Mixed	20/11/2023	22/11/2023
			24/11/2023	27/11/2023
			4/12/2023	5/12/2023
1	Premium	Mixed	20/11/2023	22/11/2023
			24/11/2023	27/11/2023
			4/12/2023	5/12/2023


* Date unknown

Berry Collapse – Sample Preparation

Humidity Chamber

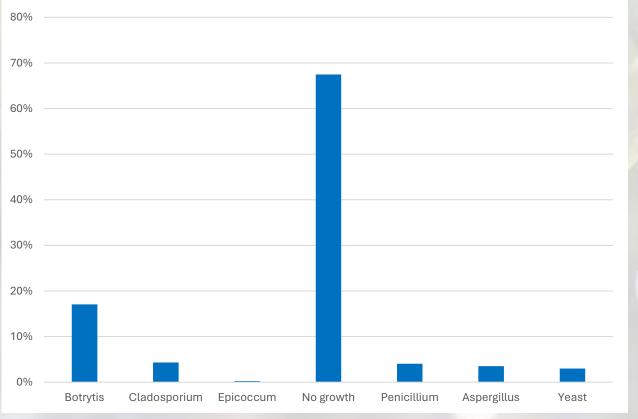
Agar Dish

Berry Collapse – Sample Preparation

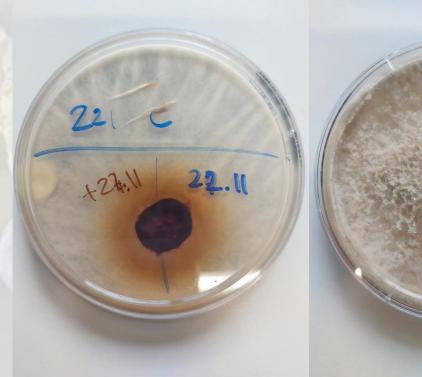
Surfaced Sterilised Berries

Berry Collapse – Preliminary Results

Expression of fungal growth on titre plates 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% No Growth Penicillium Aspergillus Yeast Botrytis Cladosporium Rhizopus

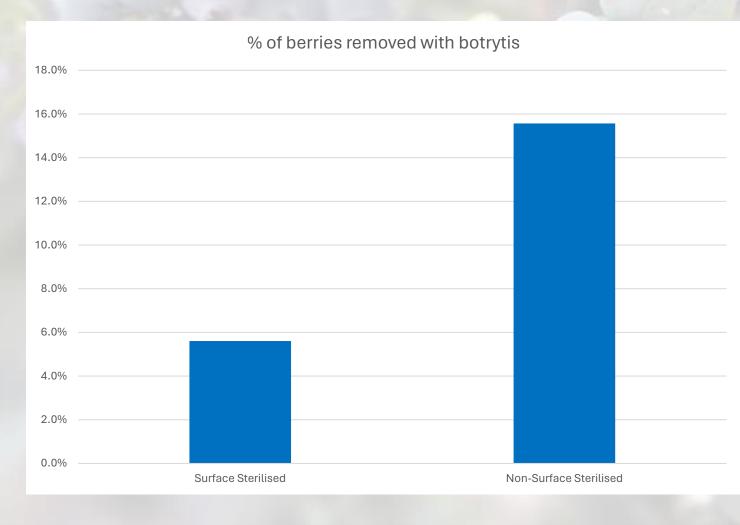

*All berries were surfaced sterilised

Observational note: not all berries with internal browning (breakdown) expressed botrytis over the 7 day monitoring period.



Berry Collapse – Preliminary Results

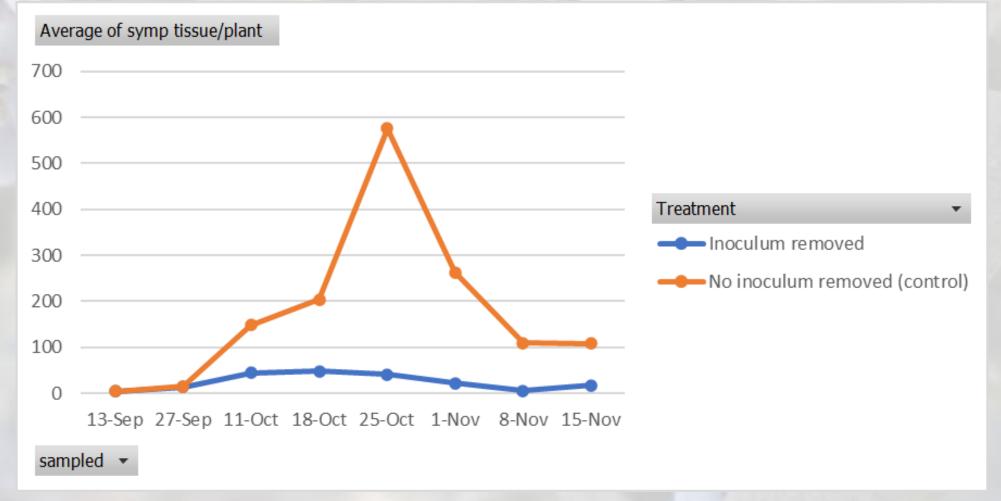
Expression of fungal growth on agar plates



*All berries were surfaced sterilised

Botrytis

Berry Collapse – Preliminary Results


Picking Scar Botrytis Expression (Stems vs No Stems)

% Botrytis				
No				
Variety	Stems	Stems	Storage temp	
Eureka	2.2	6.7	12 °C	
Sunrise	16.7	56.7	Room Temp	

Observational note: There was an approx. 3 fold increase of botrytis where berries had no stems.

Inoculum Trial – A Glimpse at Preliminary Results (PFR)

Counts of symptomatic tissues (mainly aborted flowers) per plant in inoculum removed tunnel and control tunnel.

Berry Collapse – Preliminary Discussion

- These preliminary conclusions are drawn from my observations and data interpretation; further analysis by Plant and Food Research is underway and will be presented to BerryCo in the coming months.
- Among agar and titre-monitored surface-sterilised blueberries, only a minimal percentage expressed botrytis.
- In humidity chambers, non-surface-sterilised blueberries displayed a higher botrytis expression compared to surface-sterilised ones.
- The expression of post harvest botrytis in fruit is more likely due to picking scar infection from spores at harvest than from 'latent' botrytis infection at flowering.

I will now move on to show some highlights from data analysis...

Leaf Nutrient Content Summary – 2021-2023

			Grower	Grower
	MBO Range	Hills Range	Range	Mean
Macro				
Nitrogen	1.8 - 2.2	1.8 - 2.1	0.9 - 2.4	1.7
Phosphorous	0.12 - 0.3	0.12 - 0.4	0.08 - 0.22	0.1
Potassium	0.6 - 1.2	0.3 - 0.60	0.5 - 1.5	0.8
Calcium	0.4 - 1	0.4 - 0.8	0.21 - 0.74	0.4
Magnesium	0.12 - 0.25	0.12 - 0.25	0.09 - 0.29	0.2
Sodium	0 - 0.25	0 - 0.05	0.002 - 0.094	0.0
Sulphur	0.12 - 0.25	0.13 - 0.2	0.11 - 0.62	0.2
Micro				
Iron	60 - 150	60 - 200	33 - 146	51.4
Manganese	50 - 500	50 - 350	20 - 350	105.0
Copper	2.0 - 10	5.0 - 20	2.0 - 36	6.0
Boron	30 - 100	30 - 70	14 - 118	40.3
Zinc	12.0 - 30	8.0 - 30	12 - 132	39.9

Units for macro are % and micro mg/kg (dry weight)

Fruit Nutrient Content – 2023 Grower Summary

	*Published Range		Grower Range
Macro		Average	
Nitrogen	74 - 103.1	94.3	30.7 - 163.5
Phosphorous	6.8 - 20	16.7	12.4 - 23.1
Potassium	66 - 98	85.1	70.6 - 104.7
Calcium	6.6 - 15.2	8.9	4.6 - 12.5
Magnesium	4.5 - 10	6.2	4.4 - 7.7
Sulphur	10.1 - 25.4	12.7	7.7 - 16.5
Micro			
Iron	0.15 - 0.57	0.19	0.11 - 0.71
Manganese	0.14 - 1.52	0.38	0.11 - 1.4
Copper	0.01 - 0.09	0.04	0.02 - 0.12
Boron	0.08 - 0.14	0.10	0.08 - 0.16
Zinc	0.06 - 0.13	0.09	0.06 - 0.12

*Data for published range from Krishna et al., 2023 Units mg/100g (wet weight)

Residue Analysis – Fail Summary

Product	Active	# Orchard fails	Fail Reason	Action
Pristine	Boscalid	1	3x label rate	50g/100L
Dithane, Manzate	Mancozeb	5	<120 days between application & residue test	>120 days
			250 g/100L applied	200g g/100L
Folpan	Folpet	1	Long residue breakdown	Not recommended
Movento	Spirotetramat	3	3 consecutive sprays just before flowering	Alternate sprays
Mortar, Applaud, Ovation	Buprofezin	1	All export MRLs are non-detectable (0.010 mg/kg) Post-harvest only	
Weedmaster	Glyphosate	1	NZ MRL is non-detectable (0.010 mg/kg)	Not recommended in or around tunnels

Thank you for listening...

Are there any questions?